Output:

packages = ["langchain", "pinecone", "tqdm", "transformers", "huggingface-hub", "textwrap", "sys", "os", "torch", "nltk"] from pyscript import Element from langchain.document_loaders import UnstructuredURLLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from langchain.vectorstores import FAISS from langchain.vectorstores import Pinecone import pinecone from tqdm.autonotebook import tqdm from langchain.chains import RetrievalQAWithSourcesChain from langchain.embeddings import HuggingFaceEmbeddings from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline from langchain import HuggingFacePipeline from huggingface_hub import notebook_login import textwrap import sys import os import torch import nltk nltk.download('punkt') nltk.download('averaged_perceptron_tagger') os.environ['OPENAI_API_KEY']='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' URLs=[ 'https://blog.gopenai.com/paper-review-llama-2-open-foundation-and-fine-tuned-chat-models-23e539522acb', 'https://www.mosaicml.com/blog/mpt-7b', 'https://stability.ai/blog/stability-ai-launches-the-first-of-its-stablelm-suite-of-language-models', 'https://lmsys.org/blog/2023-03-30-vicuna/' ] loaders=UnstructuredURLLoader(urls=URLs) data=loaders.load() text_splitter=CharacterTextSplitter(separator='\n', chunk_size=1000, chunk_overlap=200) text_chunks=text_splitter.split_documents(data) embeddings=HuggingFaceEmbeddings() query_result = embeddings.embed_query("Hello world") vectorstore=FAISS.from_documents(text_chunks, embeddings) #PINECONE_API_KEY=os.environ.get('PINECONE_API_KEY', 'f5444e56-58db-42db-afd6-d4bd9b2cb40c') #PINECONE_API_ENV=os.environ.get('PINECONE_API_ENV', 'asia-southeast1-gcp-free') #pinecone.init( # api_key=PINECONE_API_KEY, ## environment=PINECONE_API_ENV #) #index_name='langchainpinecone' #vectorstore=Pinecone.from_texts([t.page_content for t in text_chunks], embeddings, index_name=index_name) #vectorstore=Pinecone.from_documents(text_chunks, embeddings, index_name=index_name) llm=ChatOpenAI() notebook_login() tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf", use_auth_token=True,) model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", device_map='auto', torch_dtype=torch.float16, use_auth_token=True, load_in_8bit=True, #load_in_4bit=True ) pipe = pipeline("text-generation", model=model, tokenizer= tokenizer, torch_dtype=torch.bfloat16, device_map="auto", max_new_tokens = 512, do_sample=True, top_k=30, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id ) llm=HuggingFacePipeline(pipeline=pipe, model_kwargs={'temperature':0}) llm.predict("Please provide a concise summary of the Book Alchemist") result=chain({"question": "How good is Vicuna?"}, return_only_outputs=True) wrapped_text = textwrap.fill(result['answer'], width=500) def my_function(): query=Element('input.str').value result=chain({'question':query}) result_place = Element('output') result_place.write(result)